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Abstract-This paper is aimed at determining the overall properties and the local stresses of a
composite material. The material is constituted of elastic ellipsoidal inclusions suspended in a
homogeneous elastic matrix. An analytical approximate method is proposed to account for the
interaction between the inclusions at finite concentration. This approach is based on a formulation
of the problem of heterogeneous elasticity proposed by Zeller, R. and Dederichs, P. H. (1973).
Elastic constant of polycrystals, Phys. Status Solidi B 55, 831-842. The zero order approximation
of our scheme, coincides with the Mori-Tanaka method when the inclusions are spherical, but
improves significantly this method when higher order approximations are considered. The mor
phological and spatial distribution of the inclusions is accounted for in our scheme. Through
different examples, it is shown how our results compare to existing analytical or numerical solutions.
Copyright © 1996 Published by Elsevier Science Ltd.

I. INTRODUCTION

This paper is aimed at determining the overall elastic properties and local stresses of a
composite material. The material considered is constituted by elastic ellipsoidal homo
geneous inclusions, possibly ofdifferent phases, distributed in a homogeneous elastic matrix.
Our objective is to derive a simple analytical approximate method that provides a mean to
account for the interaction between the inclusions at finite concentrations.

The pioneer work of Eshelby (1957) on the elastic inclusion is the basis of several of
the methods developed to analyse the response of a composite material of the type con
sidered here. Among these methods, the I-site self consistent scheme (Budiansky, 1965;
Hershey, 1954; Kroner, 1958), has been successful in obtaining the effective properties at
a low concentration of inclusions. However this scheme is symmetric in the sense that the
different phases are equally treated, no distinction being made between the inclusions and
the matrix. Furthermore an inclusion feels the surroundings (i.e., the other inclusions and
the matrix) through the homogeneous equivalent medium, and therefore the interaction
between the inclusions is not well described at finite concentration. The differential scheme,
Boucher (1974), McLaughlin (1977), Norris (1985), Hashin (1988), Christensen (1990),
provides a method that accounts for the fact that one phase is suspended in a matrix of
another phase. The results of Zimmerman (1991) concerning an elastic material with hard
spherical inclusions or spherical voids are in good agreement with experimental results up
to a concentration of inclusions of 50%. The composite sphere model of Christensen and
Lo (1979) and the model of Mori and Tanaka (1973) (equivalent to the Hashin-Shtrikman
upper (respectively lower) bound in the case of spherical soft (respectively hard) inclusions)
give an evaluation of the effects of the dispersive phase, with the restriction that this phase
has an isotropic spatial repartition. These models improve the quality of the evaluation of
the effective properties of composites with inclusions at large concentrations.

Our approach is based on the work of Zeller and Dederichs (1973), who formulated
the problem of heterogeneous elasticity in terms of an integral equation, similar to the
Lippman-Schwinger-Dyson equation of Quantum Mechanics. From that integral equa
tion, and by taking the homogeneous matrix as a reference medium, we obtain the average
stresses and strains in the inclusions as solutions of a linear system of equations. The
number of unknowns is finite in the case of a periodic spatial distribution of inclusions.
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Some randomness can be accounted for by considering a representative volume with a large
number of inclusions. This representative volume is then reproduced by periodicity so as
to cover the whole three-dimensional space. Different realizations of the distribution of the
inclusions can be analysed to get statistical information.

The approach developed here has some relation to that presented by Molinari et at.
(1987), Ahzi et at. (1987) and Canova et at. (1992) in the case of polycrystalline materials.
To account for a better description of the interaction of a grain with its neighbours, a
cluster self consistent scheme was developed in these papers. The classical I-site self con
sistent scheme, where the grain is embedded in the homogeneous equivalent medium, was
extended in the following way. A grain is embedded in a cluster constituted by several
layers of neighbouring grains. The cluster is itself suspended in the homogeneous equivalent
medium. The present work, although it relies on similar ideas, has a different context since
the matrix has to take here a previlegious role.

The problem of the interaction of elastic inclusions at finite concentration has also
been considered recently by Rodin (1993) with a different approach based on the eigenstrain
method. The results obtained by Rodin (1993) for a regular periodic arrays of spheres are
in good agreement with finite element calculations. Note also that the multiparticle problem
was considered by Buryachenko and Kreher (1995) in a statistical approach.

The cluster method developed here is quite general. It applies for ellipsoidal inclusions
and arbitrary spatial distributions. The results presented are restricted to spherical
inclusions. The accuracy of the cluster scheme is tested by comparison with existing ana
lytical or numerical calculations. In the case of a two phase material, where the inclusions
are spherical, the cluster scheme is shown to coincide with the Mori-Tanaka method, at
the first-order, i.e., when the cluster is reduced to a single inclusion. When the size of the
cluster is increased, the interaction effects between inclusions are shown to be well accounted
for.

2. FORMULAnON OF THE PROBLEM

The local linear elastic behavior is described by the Hooke's law

(1)

where C;jkl is the tensor of elastic moduli, x is the position vector, and where (iij and lJij

designate the Cauchy stress and the infinitesimal strain tensor, respectively, the latter defined
by

where u is the displacement vector. The subscript j designates the partial derivative with
respect to Xi' The convention of summation on repeated indices is adopted in this paper.

The macroscopic constitutive law reads

(2)

where Lij and E i) are the macroscopic Cauchy stress and strain tensors, respectively, and
qXI represents the effective tensor of elastic moduli.

We consider now a homogeneous reference medium with a tensor of elastic moduli
Ci~kl' The tensor of elastic moduli of the composite material is decomposed into a constant
part C~kl and a fluctuating part I5Cijkl

(3)

A substitution of the constitutive law eqn (I) into the equilibrium equation
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provides a Navier-type equation

in which};(x) is a fictitious body force defined by
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(4)

(5)

(6)

The solution of the Navier equation (5) can be expressed in terms of the Green
functions Gmi

Um(x) = U~(X)+f GmJx-x')j;(x')dx'.
RJ

(7)

The Green functions are associated to the reference medium of moduli Ci~kl and are
assumed to match a condition of zero displacement at infinity. They are solutions of the
following set of equations:

(8)

where c:5(x - x') represents the Dirac function located at x' and the c:5 im are the Kronecker
symbols. When incorporating the definition (6) of };(x) in eqn (7), we obtain, after deri
vation, integration by part and symmetrization, an integral equation (where the strain Ilmn

is the unknown) similar to the Lippman-Schwinger-Dyson equation in Quantum Mech
anics [see Zeller and Dederichs (1973)]

The kernel in the integral is defined by

r mnij = [Gmi.nj] {mn}{ij} .

(9)

(10)

The symbols {mn}, and {ij} indicate that the quantity has been symmetrized with respect
to (m, n) and (i,}), respectively.

3. THE MULTIPLE INCLUSIONS PROBLEM

In this paragraph, we take advantage of the particular nature of the composite material
considered here, which consists of elastic inclusions suspended in a homogeneous infinitely
extended matrix. The tensor of elastic moduli of the matrix is denoted by em. A natural
choice is to take the matrix as the reference medium, therefore we have eo = em.

The inclusions are assumed to be ellipsoidal. The geometry of an inclusion of label I
is characterized by the principal lengths af, hI> c" three Euler angles and the position of its
center. The material properties are represented by the tensor of elastic moduli C.

We shall assume that the stresses (and strains) are uniform in an inclusion. The
uniformity of the stresses in an inclusion embedded in an infinite space has been dem
onstrated by Eshelby (1957). For a large concentration of inclusions, the hypothesis of
stress uniformity certainly fails, but since we are mostly interested by the evaluation of the
mean stresses in the different phases, it remains an interesting working assumption. That
hypothesis will be tested by comparison with results obtained with numerical methods, or
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by other analytical means. Let us denote by 81 the strain in the inclusion of label I. The
domain occupied by this inclusion will be noted I and its volume by VI'

Considering the definition (3), it follows immediately that:

{
o when x E matrix

t5C kl (X) =
'i I I 0 ..

t5Cijkl = C;jkl- C ijkl when x E mcluslOn I.
(11)

Following the assumption of uniform strain within an inclusion, the integral equation
(9) reads

(12)

where the summation runs along the whole set of inclusions (possibly infinite). Note, by
inspection of eqn (12), that strain uniformity is not realized in an inclusion, except when a
single ellipsoidal inclusion is considered.

Therefore, in the framework of this simplified approach, to attribute a meaning to
8~n, we shall define it as the mean strain in the inclusion I. Considering the average in Iof
the strain defined by eqn (12), we obtain

where

r~nij = ~ rf rmnix - x') dxdx'.11 J

(13)

(14)

Note that the interactions of the inclusion I with the other inclusions are accounted
for by the fourth order tensors r IJ (J #- I). These interaction tensors can be calculated when
the shape and the position of inclusions are known. We refer to Appendix A for explicit
values of r IJ when spherical inclusions are considered.

The integration constant SO that appears in eqn (12), can be related to the macroscopic
strain E applied at infinity. We denote by <J> the average of the quantity f, defined as
follows:

. 1 f<J> = hm -4~ J(x')dx',
R~oo R337l: B(x.R)

(15)

where B(x, R) is a sphere of center x and radius R. In this paper the hypothesis of statistic
homogeneity is considered to be satisfied. Therefore, the definition of the average <J> does
not depend on the choice of the center x of the sphere B(x, R). Averaging of the integral
eqn (9) results in the following expression:

(16)

where * designates the usual convolution. The kernel r mniix - x') can be decomposed into
the sum of a singular Dirac part having the form, - E~nijt5 (x - x') and of a function having
a singularity of the form 1/lx-x'1 3

•

The averaging operation retains only the Dirac singularity:
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For an isotropic matrix defined by the shear and bulk moduli /10 and kO, one has

where Iijkl is a unit tensor defined by
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(17)

(18)

(19)

The relations (13) constitute a set of equations with an infinite number of unknowns
Il

J
• As in Canova et al. (1992), the problem can be reduced to the solution of N equations

with N unknowns, by considering an elementary representative cubic volume (ERV) that
contains N inclusions. The ERV is reproduced by periodicity so as to cover the whole space.
To each inclusion K = 1, ... , N in the ERV is attached a family of inclusions obtained by
periodicity. This family is denoted by the label K. The volumic fraction of the inclusion K
in the ERV is noted fK and is equal to the volumic fraction of the family K in the
whole space. The unknowns are the strains ilK in the inclusions (K = 1, ... , N). With these
notations the constant Ilo can be expressed by using eqns (16) and (17) as follows:

(20)

For sake of simplicity, the tensorial notation is adopted, with the double product
denoted by a double dot. For clarity of the definition, the indicial notation is also given in
parenthesis.

The strains III are solutions of the set of linear equations

oc N

III = E+ L r lJ
: bCJ

: Il
J +Eo: L fKbC K

: ilK.
J-I K-I

(21)

Denoting by FI the set oflabels of the family associated to the inclusion 1(1 :( 1:( N),
eqn (21) can be rewritten as

N

III = E+ L r lJ
: bC l

: III + ... + L r lJ
: bCN

: Il
N +EO: L fKbC K:ilK. (22)

JEF1 JEFN K~ I

The summations in eqn (22) involve an infinite series of inclusions. A simple approximate
solution of the system (22) can be obtained in the following way. To each inclusion I we
attach a sphere SCI, RJ of radius Rc having its center located at the center of the inclusion
I. We denote by C(I, Rc), or more briefly by CJ, the cluster of inclusions having their center
in SCI, Rc). The series in formula (22) can be now reduced to a finite summation that
involves only the inclusions located in the cluster C1. Defining by ClJ the intersection of the
cluster C1 with the family of inclusions FJ, we have

N

III = E + L r lJ
: be : III + ... + L r lJ

: be'" :Il
N + EO: L fKbC K

: ilK (23)
iEell JEC,,,, K= 1

for 1= 1, ... , N.
The convergence of the approximate solution to the exact solution when Rc --+ 00 is

proved in Appendix B.
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Since the strains 1/, I = 1, ... , N, depend linearly on the overall strain E, one can define
the localization strain tensors AI by solving the system (23)

(24)

Substituting eqn (24) in eqn (23), and considering that E is arbitrary, a linear system
of N equations is obtained where the localization tensors AI are the unknowns

N

AI=I+ L r lJ :bC 1 :A 1 +.,,+ L rlJ:bC\l:AN+Eo: LfKbCK:AK (25)
JeCIl JeC1N K ~ I

for 1= 1, ... ,N. The fourth order unit tensor I has been defined in eqn (19). The localization
tensors Al are obtained by the numerical solution of eqn (25). The matrix localization
tensor, Am, that provides the average strain in the matrix as a function of the overall strain,
is then given by

1 ( \l )Am = r 1- LhAI .
Jm 1=1

The overall properties results from the following relation:

N

cefT = (C:A) =fmcm:Am+ LJ.C:AI
,

I~ I

(26)

(27)

where cm is the tensor of elastic moduli of the matrix.
We shall now apply this approach to various configurations, where different spatial

distributions will be considered.

4. APPLICATION TO SPHERICAL INCLUSIONS

In this paragraph, the results obtained by the proposed method are compared with
closed form solutions that exist for particular spatial configurations of spherical inclusions
and also with approximate solutions obtained by finite element calculations. A discussion
with respect to experimental results is also presented. The first example considered is that
of a simple cubic periodic distribution of rigid spheres of identical radius, embedded in a
linear homogeneous isotropic elastic matrix. This case has been solved analytically by
Nunan and Keller (1984).

In our calculations the interaction of a sphere with the other spheres is accounted for
within the simplified cluster approach described in the preceding paragraph. The rep
resentative elementary volume (called also the unit representative cell for periodic com
posites) is here constituted by a cube containing a single sphere at the center, Fig. 1.
Therefore we have a single family F I of inclusions and a single unknown a1

. Equation (23)
reduces to

a1 =E+ L rlJ:bC:al+Eo:flbC:al.
JEC I

(28)

When rigid inclusions are considered, eqn (28) is indeterminate, because the com
ponents of bC' are infinite while al is equal to zero. However, we can solve the problem for
hard deformable inclusions. Then, the case of rigid inclusions is obtained in the limiting
process where the rigidity of the inclusions is increased to infinity.

The accuracy of the approximate solution depends on the radius Rc of the cluster. A
two-dimensional representation of the cluster attached to an inclusion I is shown in Fig. 2.
In Fig. 3, the calculated effective shear modulus (normalized by the shear modulus of the
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Matrix

a

Fig. 1. Elementary representative volume (ERV) for a simple cubic distribution of spherical
inclusions.

Cluster C,
Central inclusion I

x

Fig. 2. Schematic representation of the cluster of radius Rc attached to an inclusion I. A simple
cubic distribution of spherical inclusions is shown here. The elementary representative volume

(ERV) is the small cube at the center of the figure.
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Fig. 3. Convergence of the cluster scheme for increasing values of the radius R, of the cluster. A
simple cubic distribution of rigid spheres is considered. Note that for Rc<a, the cluster contains a
single inclusion. In that case the results are identical to those obtained with the Mori-Tanaka

method.

3

2

1

- - .. - - Ouster
- -6 - Nunan and Keller

20 40
f(%)

60

Fig. 4. Effective shear modulus (in the principal direction of cubic symmetry) as a function of the
volumic fraction of rigid spheres (simple cubic distribution). The results of the cluster scheme are
compared with those of Nunan and Keller and are normalized with the shear modulus J1.rn of the

matrix.

matrix) in the principal direction x, see Fig. 2, is represented in terms of the radius Rc of
the cluster. The volumic fraction of the inclusions has the value of 0.5 or 0.2. It appears
that convergence is attained for Rc ~ 2a, where a is the distance between the centers of the
inclusions. For a smaller volumic fraction! of inclusions the convergence is accelerated.

For Rc < a, the cluster contains a single inclusion. In that case it is interesting to note
that the results are identical to those predicted by the Mori-Tanaka method. This result is
demonstrated in Appendix C for spherical inclusions, but seems to be no longer valid for
ellipsoidal inclusions.

Note that for a large cluster size, the results are significantly improved by the proposed
method, which better accounts for the particle interactions than the Mori-Tanaka method.

The results in Fig. 4 represent the effective shear modulus in the principal direction x,
(normalized by the shear modulus of the matrix) as a function of the volumic fraction of
the spheres. The Poisson ratio of the matrix has a value of v = 0.3. It appears that the
results of our cluster scheme are in close agreement with the results by Nunan and Keller
(1984) up to a volumic fraction of 0.4.

In addition the results of the 1 site symmetric self consistent scheme are reproduced in
Fig. 5, as well as those given by the three phase model of Christensen and Lo (1979), and
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- .. - Cluster
- -<> - I site self consistent
- - ... - - 3 phase model (C-L)
- o· - Differential

/ ,,

6040
f(%)

20
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o

Fig. 5. Comparison of the results of the cluster approach to those of the classical one site self
consistent scheme, of the three phase model and of the differential scheme. A simple cubic dis

tribution of rigid spheres is considered.

by the differential scheme. In these methods, no assumption of periodic distribution of the
spheres is made. From the results of Fig. 5, it is clear that the I site self consistent scheme
is not adapted to the material considered here, as it does not account for the connectivity
of the matrix. On the other hand, the three phase model and the differential scheme do
account for the connectivity and their results are closer to that of the cluster approach.
However, these two models are well suited for an isotropic distribution of the spheres, while
a cubic distribution is considered here. The observation that the deviation with respect to
the cluster scheme is not too large, should be attributed to the fact that the cubic anisotropy
is a mild deviation of isotropy. The definite advantage of the cluster approach when
compared with the three phase and the differential model is that it can be easily applied to
any kind of spatial distribution of inclusions. Moreover, ellipsoidal or parallelipedic
inclusions can be easily treated in the cluster scheme, while it is much more difficult in the
three phase model.

In Fig. 6, it appears that the results provided by the Mori-Tanaka method overestimate
the effective shear modulus, when rigid inclusions are considered. Note that the Mori
Tanaka results coincide with the Hashin-Shtrikman lower bound in the case of an isotropic

5

4

3

1 - - ... - - Cluster
- -<> - Mori-Tanaka

OL-~~-~-'-~-~~--'-~~-",---,

o 20 40 60
f(%)

Fig. 6. Comparison of the cluster approach with the Mori-Tanaka method for a simple cubic
distribution of rigid spheres.
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distribution of rigid inclusions. Since a simple cubic distribution is considered here, the
Mori-Tanaka method does not provide a lower bound as it is clear in Fig. 6.

The same type of results are represented in Fig. 7 for a simple cubic distribution of
spherical voids. The results of our cluster scheme are in close agreement with those obtained
by Nemat-Nasser et al. (1982) with a Fourier expansion method, Fig. 7(a). The results of
Sangani and Lu (1987) based on the method of singularity distribution seem to overestimate
the shear modulus, Fig. 7(a). In Fig. 7(b), it is shown that the cluster scheme is also in
very good agreement with the analytical results of Rodin (1993), and the finite element
calculations of Rodin (1993) and of Brockenbrough (1992).

Also, for sake of comparison, the cluster results are compared with other homo
genization schemes in Fig. 8. Note that the remarks made for Fig. 5, concerning the
adequacy of these homogenization schemes, are also valid here. Note also, that the per
colation threshold predicted at a volumic fraction of 0.5 by the I site self consistent scheme,
is not reproduced by the other methods.

It is interesting to compare the prediction of the cluster scheme with experimental
data. In Fig. 9, the data of Walsh et al. (1965) for the bulk modulus of a sintered glass are
compared with the differential scheme, as in the work of Zimmerman (1991), and also with
the cluster approach for a simple cubic lattice of voids. Although the exact spatial dis
tribution of voids in the real material is not known (and certainly is not exactly of the type
considered in the cluster calculation), the agreement with the experiments is good, specially
when compared with the I site self consistent scheme. Note that the largest volumic fraction
of spherical voids with equal radius is equal to f = 0.52 for a simple cubic lattice. That

1.00
(a)

0.80

E!::i. 0.60
-...

:::::
"::i. 0.40

0.20
- .. - Cluster
- - 0 - - Nemat-Nasser et al.
- - ... - - Sangani and Lu

0.00
0 20

f(%)
40 60

(b)
1.0

0.5

- .. - Cluster
.. oX - - Rodin
- - + - - F. E. Rodin
- - 0 - - F. E. Brockenbrough

0.0 L-_~__-'--__~_---'__~_----'

o 20 40 60
f(%)

Fig. 7. Effective shear modulus in the principal direction of cubic symmetry for a simple cubic
distribution of spherical voids. The results of the cluster approach are compared with those of
Nemat-Nasser et al. (1982) and Sangani and Lu (1987), Fig. 7(a), and with the analytical results of

Rodin (1993) and the finite element results of Rodin (1993) and Brockenbrough (1992).
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Fig. 8. Comparison of the results of the cluster approach with other homogenization models. A
simple cubic distribution of spherical voids is considered.
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Fig. 9. Comparison of the results of the cluster scheme with experimental data obtained for a
sintered glass. The results are also compared with those of the one site self consistent scheme and

of the differential scheme.

restriction limits the comparison between the cluster results and the experimental data.
Concerning the convergence of the cluster scheme, it has been checked that increasing the
size of the cluster beyond Rc = 2a does not improve the results for a simple cubic distribution
of spherical voids.

Another example is that of a three phase material, where a BCC distribution of spheres
is considered, half of them being voids, the others being rigid inclusions, Fig. 10. For that
centered cubic symmetry, the elementary representative volume is a cube containing a
sphere at the center and one eighth of a sphere at each comer of the cube, see Fig. 11. Two
families of inclusions F] and F2 have to be considered and the equation system (23) reduces
to

2

/l' =E+ L rIJ:bC':/l'+ L r IJ :bC2 :/l2 +EO: LfKbCK:/lK (29)
JeC l1 JEC12 K=l

2

/l2=E+ L: r 2J :bC:/l1 + L r 2J :bC2 :/l2+EO: L:fKbCK:/lK. (30)
JEe2 ] JeC22 K= I

The particular case where all the spheres are voids will be also analyzed. Then
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Rigid
sphere

Matrix

Void

Fig. 10. Body centred cubic distribution of the spherical inclusions.

Fig. II. Representative elementary volume for the BCC distribution of Fig. 10.

bCI = bC2
, and due to the symmetry of the problem we have III = 1l

2
• This results in a single

equation to solve

III = E+ L r lJ
: bCI : III +Eo :JlbC I : IIi

JEC I

C I being the cluster defined in section 3, and II the volumic fraction of voids.

(31)
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1.0

B::i.

i 0.5
:i.

- .. - Ouster
- - 0 - - Brockenbrough
.. x· . Rodin

10
f(%)

20 30

Fig. 12. Comparison of the cluster scheme with the analytical results of Rodin (1993) and numerical
results of Brockenbrough (1992). A body centred cubic distribution of spherical voids is considered.

In Fig. 12, the effective shear modulus of a two phase composite, where all the spheres
are voids distributed in a BCC array, is represented as a function of the volumic fraction
of the spheres. The Poisson ratio of the matrix has a value of v = 0.3. Our results are
compared in Fig. 12 with the analytical results obtained by Rodin (1993), and the numerical
results of Brockenbrough et al. (1992). In Fig. 13, the convergence of the cluster approach
is shown to be satisfactory for Rc ~ 2a.

The results in Fig. 14(a), correspond to a three phase material with a BCC distribution
of spheres, half of them being voids, the others rigid inclusions, see Fig. 15. The variation
in the volumic fractions is obtained by changing the radius of the spheres. The variation of
the effective shear modulus in a principal direction of cubic symmetry is considered in terms
of the volumic fraction of voids, and for different volumic fractions of rigid spheres. The
effect of the voids in decreasing the shear modulus is shown to be much more sensitive for
a large volumic fraction of rigid spheres. The results in Fig. 14(b) correspond to a simple
cubic distribution of inclusions, and illustrate, when compared to Fig. 14(a), the effects of
the spatial distribution of inclusions.

These effects are illustrated again in Fig. 16, where two phase materials are considered.
In Fig. 16(a), we have a simple cubic (SC), a body-centred cubic (BCC) and a face centred
cubic (FCC) distribution of voids. The spatial distribution is shown to have an important
effect as for the SC distribution the shear modulus can be reduced by 20%. Similar results
are presented on Fig. 16(b) for rigid spheres. These results can be compared with those of

0.40

0.30
/C:

,

f=0.6

,_--0 o-0--0--{){)---OO----00- D--
B~ ,,~

~ 0.20 - ~
"'::i. Mori-Tanaka

0.10

642
0.00 Ll-.L..I.---'-L....J......J.--'--J-LJ......L.L..L..--'-L....J......J.--'---.J---'-J......L.L..L....L-l-....J......J.-'

o
Rda

Fig. 13. Convergence of the cluster scheme for a BCC distribution of spherical voids. The results
obtained in that case are close to those of the Mori-Tanaka method.
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Fig. 14. Effective shear modulus (in the principal direction of cubic symmetry) for a three phase
material constituted by a Bee distribution of spherical voids and of rigid spheres, Fig. 14(a), and

by a simple cubic distribution, Fig. 14(b).

Fig. 15. Schematic two-dimensional representation of the Bee distribution of spherical voids and
rigid spheres.
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Fig. 16. Illustration of the effects of the spatial distribution of inclusions. Simple cubic, BCC and
FCC distributions of spherical voids, Fig. 16(a), and of rigid spheres, Fig. 16(b).
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Fig. 17. Comparison of results of the cluster scheme to those of Rodin (1993) and Sangani and Lu
(1987), for a BCC distribution ofelastic spheres, with different values of the ratio /ll//lm (0.05,5,40).

Fig. 14, considering the fact that zero percent of voids corresponds to a se distribution of
rigid spheres in Fig. l4(a), and to a FCe distribution in Fig. l4(b).

In Fig. 17, we have compared our results with those of Rodin (1993) and Sangani and
Lu (1987) for a Bee distribution of elastic spheres. Three different values are considered
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Fig. 18. Effective shear moduli (in the principal directions of symmetry) for an orthorhombic
distribution of rigid spheres (c = 2a = 2b).
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Fig. 19. Convergence of the cluster scheme for increasing values of radius R of the cluster. An
tetragonal distribution of rigid spheres is considered (c = 2a = 2b). Note that the Mori-Tanaka

results are retrieved when R, -+ O.

of the ratio J1I/J1m of the shear modulus of the inclusions with the shear modulus of the
matrix. The results of the cluster scheme are very close to those of Rodin.

Finally we have considered an tetragonal distribution of rigid spheres with c = 2a = 2b.
In Fig. 18, the effective shear moduli J1etL and J1~~ = J12~ are compared (the indices 1,2,3
refer to the directions a, b, c, respectively). It is shown how the anisotropic global behaviour
is enhanced when the volumic fraction of the voids is increased. The convergence of the
cluster approach is checked in Fig. 19. Note that the Mori-Tanaka results (that are retrieved
when Rc --> 0) cannot account for the anisotropic global response.

5. CONCLUSION

In this paper, a general cluster scheme has been presented that accounts for the elastic
interactions between ellipsoidal inclusions embedded in an elastic matrix. When two families
of spherical inclusions distributed on a regular array are considered, it has been demon
strated that the proposed cluster approach coincides with the Mori-Tanaka method, in
the limiting case of the radius Rc of the cluster tending to zero.

When the radius of the cluster is increased, the results of the cluster scheme were shown
to converge. Simple analytical solutions were obtained for a single family of spherical
inclusions regularly distributed.
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The results ofthe cluster scheme were shown to agree with other analytical or numerical
solutions. In addition, the flexibility of the proposed method allows applications to more
complex situations. As an example, a tetragonal distribution of spherical inclusions was
treated. Further developments with ellipsoidal inclusions will be presented in another paper.
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APPENDIX A
EVALUATION OF r IJ

The calculation of the tensor r IJ given by the relation (14) is complex when the matrix is not isotropic. In
this case the Green's tensors cannot be explicitly calculated. A numerical method has been proposed by Kneer
(1965) for the calculation ofrll

, see also Laws (1977) and Ghahremani (1977). Berveiller et al. (1987) have used
a similar method to calculate the tensor r IJ in the case of two ellipsoidal inclusions.
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In the case of spherical inclusions, the results are analytical. Let us denote by R = (0, X b X 2, X3) a rectangular
system, with the axis OX3 chosen so as to contain the centers of the spherical inclusions. We denote by a, b the
radius of the inclusions I and J, by V] = 4nb3/3 the volume of J, by R the distance between the centers and by J1., v
the matrix shear modulus and Poisson ratio. The components [~I are given by

IJ - V] I 9 2
[~]III = [2222 = -- -(-1--) (1-4v+,p )

16nR 3 J1. -v

IJ lJ - V] I 3 2
[lin =[2211 =---(-1--) (-I+,p )

16nR 3 J1. -v

[ IJ [lJ [lJ [IJ - V] I (2 12 2)
1133 = 2233 = 3311 = 3322 = -- -(-1--) -sP

16nR 3 J1. -v

[ lJ [lJ [lJ [lJ - VJ I (I 2 3 2)1212 = 1221 = 2121 = 2112 = -- -(-1--) - v+,P
16nR 3 J1. -v

[ 1J [1J [1J [lJ - VJ I (I 12 2)1313 = 1331 = 3113 = 3131 = -- -(-1--) +v-sP
16nR 3 J1. - v

[ lJ [lJ [lJ [IJ - VJ I (I 12 2)2323 = 2332 = 3223 = 3232 = -- -(-1--) +v-sP
16nR 3 J1. -v

lJ - VJ I 24 2
[3333 =---(1)(-8+8v+ s p ),

16nR 3 J1. - v

where

p2 = (a 2 +b2 )/R 2

Note that [if,,1 = 0 when three of the indices are different, or when three of the indices are equal, but different
from the fourth.

APPENDIX B
CONVERGENCE OF THE CLUSTER SCHEME

For an inclusion I and a radius Ro we consider a partition of the family Fi of inclusions into:

(BI)

where CI; has been defined in the paragraph 3 as the set of the inclusions of the family Fi with a center included in
the sphere SU, Rc)' The latter has a radius Rc and its center is identical to that of the inclusion I. Conversely the
centers of the inclusions belonging to C\i are located outside SCI, Rc)

For large values of the cluster radius Ro it is justified to replace the system of eqn (22) by eqn (23), providing
that the tenns of the fonn

L [1J: be :ei

lee/;

can be neglected. This is of course the case if one can prove that

EI11 I [lJ = O.
C lEC

h

This result comes from the following well known property satisfied by rex, x') :

t[(X, x') dx' = 0 (XES)

(B2)

(B3)

for x belonging to the interior of a sphere S (the integration is made on the exterior of the sphere SO = R3
- S).
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It is sufficient to prove eqn (B2) for the family F I of inclusions, that is for i = I. Let us consider the inclusion
J belonging to ell; its center is located outside the sphere S(l, Rc)' We shall note OJ the cube reproduced by
periodicity from the ERV, that includes the inclusion J, see Fig. BI.

From eqn (14) we have

For a large value of R" the following approximations are justified:

where XJ is the center of the inclusion J.
Since VJ/OJ is equal to the volumic fraction}; of inclusions of the family Flo we have:

where

(B4)

(B5)

is close to RJ-S(l, Rc) when Rc is large. Thus ncan be replaced by 5", where S is the sphere S(l, RJ. Therefore
the demonstration of eqn (B2) results from:

I r lJ
"" I, ~ f( fr(x, x') dX')dX = O.

JEer1
I s'

This appears as a direct consequence of eqn (B3), since XES.

Elementary representative volume

o C n

(B6)

• A
Cn

Fig. B1. Schematic representation of the partition of the family F I of inclusions.
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Fig. CI. Representation of a periodic spatial distribution of two families of spheres FI and F2•

APPENDIX C
COMPARISON OF THE CLUSTER SCHEME WITH THE MORI-TANAKA METHOD

A population of spherical inclusions is considered. It is shown, at least when two families of inclusions are
considered, that the cluster approach coincides with the Mori-Tanaka method, when the cluster size tends to zero.

In the Fig. CI, a representation is given of a periodic spatial distribution of two families of elastic spheres F,
and F2 . Considering the fact that we have two families of inclusions, and that the cluster size is so small that a
single inclusion is contained in each cluster, the relation (23) reduces to :

[I+(1-fJlED:bC']: el -f2ED: bC': e2 = E (CI)

(C2)

To obtain that results we have used the fact that Cl2 = C2l = 0 (C12 = CI uF2) and that r Il = - EO for
spherical inclusions with EO defined by (18).

On the other hand, the Mori-Tanaka method provides the following relations:

(C3)

(C4)

The mean strain em in the matrix is related to the macroscopic strain E through the relation

(C5)

Therefore em can be eliminated in eqns (C3) and (C4) and a simple algebraic manipulation leads to a system
of equations identical to eqns (CI) and (C2).


